If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + -6x + 11 = 0 Reorder the terms: 11 + -6x + 9x2 = 0 Solving 11 + -6x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 1.222222222 + -0.6666666667x + x2 = 0 Move the constant term to the right: Add '-1.222222222' to each side of the equation. 1.222222222 + -0.6666666667x + -1.222222222 + x2 = 0 + -1.222222222 Reorder the terms: 1.222222222 + -1.222222222 + -0.6666666667x + x2 = 0 + -1.222222222 Combine like terms: 1.222222222 + -1.222222222 = 0.000000000 0.000000000 + -0.6666666667x + x2 = 0 + -1.222222222 -0.6666666667x + x2 = 0 + -1.222222222 Combine like terms: 0 + -1.222222222 = -1.222222222 -0.6666666667x + x2 = -1.222222222 The x term is -0.6666666667x. Take half its coefficient (-0.3333333334). Square it (0.1111111112) and add it to both sides. Add '0.1111111112' to each side of the equation. -0.6666666667x + 0.1111111112 + x2 = -1.222222222 + 0.1111111112 Reorder the terms: 0.1111111112 + -0.6666666667x + x2 = -1.222222222 + 0.1111111112 Combine like terms: -1.222222222 + 0.1111111112 = -1.1111111108 0.1111111112 + -0.6666666667x + x2 = -1.1111111108 Factor a perfect square on the left side: (x + -0.3333333334)(x + -0.3333333334) = -1.1111111108 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 40/2x+40/4y=12 | | W(4w)=1 | | 3-2j=2+4j | | -6x^2-x=5 | | 1-(131.91/x)=0.68 | | x^2/20 | | m^2-25+114=0 | | 1-(52.12/x)=0.75 | | 1/2+2/5 | | 1-(120.89/x)=0.48 | | 7x-3.8=20.7 | | 1-(91.09/x)=0.55 | | 1-(48.07/x)=0.73 | | 1-(40.46/x)=0.50 | | (3x)/(2x-1)=6 | | 5(x+4)=3(x+8)+2 | | 1-(21.24/x)=0.49 | | (5n/3)-1=(3n/2)+4 | | 10x+13=7x-8 | | 8r-r+3+2r=21 | | 1-(5.50/x)=0.75 | | 1-(9.99/x)=0.70 | | -5q+11=3q-17 | | 5n/3-1=3n/2+4 | | p-100=100 | | (5x+1)/5x | | -12=-4+8n+2-3n | | 1-(3.82/x)=0.90 | | 72m=8 | | 1-(53.01/x)=0.65 | | 7(3k-2)=7 | | 3j-7-5j=7 |